Vivekananda College of Engineering & Technology, Puttur [A Unit of Vivekananda Vidyavardhaka Sangha Puttur @] Affiliated to VTU, Belagavi & Approved by AICTE New Delhi

59

CRM08

Rev 1.8

CSE

30/6/2022

CONTINOUS INTERNAL EVALUATION- 1

Dept: CSE	Sem / Div:4 th (A&B)	Sub: Design and Analysis of Algorithms	S Code: 18CS42
Date: 4/7/2022	Time: 3-4.30 P M	Max Marks: 50	Elective: N

Note: Answer any 2 full questions, choosing one full question from each part.

QN	Questions	Marks	RBT	CO's			
11							
1 a I	Define algorithm. Discuss the criteria's that an algorithm must satisfy.	9	L1	CO1			
	Write the algorithm to find maximum element in the given array and explain the mathematical analysis of non-recursive algorithm.	8	L1	CO1			
	Solve the recurrence relation $M(n) = 2M(n-1) + 1$ for $n>1$; $M(1)=1$	8	L2	CO1			
OR							
	Explain asymptotic notations Big O, Big Ω and Big θ , that are used to compare the order of growth of an algorithm with example	9	L2	CO1			
	Explain important fundamental data structures used in algorithm design.	8	L2	CO1			
c	Prove that If $t_1(n) \in O(g_1(n))$ and $t_2(n) \in O(g_2(n))$, then $t_1(n) + t_2(n) \in O(\max\{g_1(n), g_2(n)\}).$	8	L3	CO1			

PART B

3		Write a recursive algorithm for binary search and also bring out its efficiency.	9	L1	CO2			
		Write an algorithm for sorting the numbers using Quick sort. Derive the best case, worst case, average case time efficiency of the algorithm.	8	L1	CO2			
	c	List the advantages and disadvantages of Divide and Conquer.	8	L2	CO2			
	OR							
4	a	Write the algorithm for Merge Sort. Illustrate with an example. Derive the time efficiency (best case, average case, worst case) of the algorithm.	9	L1	CO2			
	b	Explain the general concept of divide and conquer method.	8	L2	CO2			
	c	Solve the recurrence relationship using Master theorem and Backward Substitution	8	L2	CO2			
		i) $T(n)=2 T(n/2)+n$ Where $T(1)=2$						
		ii) $a=1$, $b=2$, $f(n)=c$						
-	1							

Prepared by: Mr. Nithin Kurup U G/Mrs. Swapnalaxmi K

HOD